Sovereign System

Privacy-preserving identity protocol employing zero-knowledge
technology and decentralized identifiers for secure self-custody and
user-owned data across distributed ledger networks

Douglas Broughton, Mehmet Kiraz, Foteinos Mergoupis-Anagnou, Kadir Pekel, Gwin Scott

Friday 14" July, 2023

V1.1 (©2023 VENDIBLE (BVI) INC

https:/ /www.vendiblelabs.com/, info@vendiblelabs.com

https://www.vendiblelabs.com//
mailto:info@vendible.com

Sovereign System

Contents

(1__Introduction|

(1.1 Innovation vs Technology Adaptation|
(1.2 Custodial solutions vs Selt-Custody|
(1.3 Motivation and Contributions: The Sovereign System|
(1.4 Roadmap| e

2 Challenges Blocking Adoption of Permissionless Networks|
[2.1 Importance of Public Permissionless Networks|
[2.2 Consumer Challenges 0.
[2.3 Institutional Challenges| o 0o
2.4 Closed Networksl
3 Other Issues and Trends|
Bl Datal
3.2 Identity|
3.3 Privacy|.
[3.4 Decentralized Identifier Ambiguity|.o L.
4 Solution Overview|
[4.1T Sovereign System| oL e e
[4.2 General Assumptions|
[> Cryptographic Background|
(5.1 Elliptic Curves|
b.2 Hash Functions|
b3 Pedersen Commitment] oo
[>.4 ‘T'hreshold ElGamal Encryption| 0.
(5.5 Elliptic Curve Integrated Encryption Scheme (ECIES)
[5.6 Digital Signatures| o
(5.7 Recommended Curve Sizes [MSS17|, [BDIS||
(6.8 Ed25519 Clamping and Selection of Scalar to make compatible with JubJub]|
[6 Honest-Verifier Zero Knowledge (2-proofs)|

[6.1 Schnorr’s Protocol: Proving the knowledge of r such that P =rG|
[6.2 Proving the equality of messages in different Pedersen Commitments|

11
11
11
12
12

13
13
15

16
16
17
17
18
21
22
30
31

i

Sovereign System

[6.3 Proot of Knowledge in a Pedersen Commitment|
6.4 AND Composition of Schnorr’s Protocoll
[6.5 Equality Composition of Schnorr’s Protocol|
[6.6 Proving the Equality of the Secret Between JubJub and ed25519(.

7 Definitions for the Sovereign System|

(7.1 Unique identification (ulD){. o o oo
(.2 Main Accountl

B Merkle T [Authentication Pathl

[9 Open Source Crypto Libraries for ZKSNARKS|

Al Al R Al

[9.2 Proot Generation & Verity|o oo
[9.3 Communication: Use gRPC|

(10 The Sovereign System|

MOT Enfities] oo
[10.2 Trust Assumptions and Requirements|.
(10.3 Unique Identification (ulD)| L.
[10.4 Registration and Creation of a Main DID Object|

(11 A Sovereign System Use Case: Encryption of a Private Key of Other Chains|

(11.1 Login to Trustible|.
[L11.2 "T'he Protocol for Secure Storage Keys ot Other Chains|
[I11.3 Recovery of Private Keys of Other Chains|

(12 Full Recovery of Main Accounts|

[12.1 tskisunknown|

(13 Integration of Trustible with PolygonlD)

(13.1 Creating a Claim for Polygon ID through Associated Accounts

[14 Restricting Associated Accounts for Different Application Domains|

A C 1I'C Wa 1ted A] ach Main A

(15 Deactivating Main Accounts|

(15.1 Case 1: If a user remembers his/her tsk{.

[15.2 Case 2: If a user does not remember both tsk and the security answers

(16 Potential Enhancements: Extending to Social Recovery|

44
44
44
45
45

46

48
48
48
49
49

50
20
ol
o4
54

64
65
69

71
71

78
78

81
81
81
85

86
86

87

il

Sovereign System

[17 Securing the Sovereign System| 88
(17.1 Network Minimum Commitmentl. 88
[17.2 Cooperative Network| 88
[(17.3 Member Stakingf. 89
[17.4 Operational Rewards| 89

(18 Expansion of the Sovereign System| 90
(18.1 Identity Vault Questions Research|. 90
[18.2 Selective Disclosure and User-Owned Distributed Datal 90
(183 Automation of Associated Accountslo 91
[18.4 Specific Use Cases|. e 91
[18.5 Variations of the Sovereign System| L. 92

v

Sovereign System

DOCUMENT APPROVAL INFORMATION
Approved by | VENDIBLE (BVI) INC

CHANGE RECORDS

Version Reason Chapter Date

No

1.0 The Sovereign System whitepaper has - 12 Dec 2022

been created.
1.1 Correction of minor typos. New use Typos correction in all 14 Apr 2023
cases have been added. chapters. Also, Chapter
13 and 14 have been
added.

Sovereign System

Chapter 1

Introduction

1.1 Innovation vs Technology Adaptation

Blockchain technology allows participants to transact directly with peers without intermedi-
aries or custodians [Nak08|. The earliest adopters of this technology include technologists and
internet-savvy individuals who ideologically agree with the principles behind self-sovereignty
or self-custody. For most, however, self-custody is a technical burden with risks, complexities,
and costs that outweigh the current perceived benefits. Without a new system for interacting
with decentralized technologies, this friction will keep most individuals from acceptance of the
technology without the assistance of custodians.

Examining technology acceptance leads us to critical factors necessary for adopting dis-
tributed ledger technology. Rogers’ Diffusion of Innovations [RS71l, [Rog79, Rogl Rog03] [Rog10]
(DOI) describes how new technologies gain acceptance in social systems. The first users are
deemed innovators and acknowledge the practical advantages of a novel system over the per-
ceived costs. Innovators are often willing to interface with a new technology regardless of the
costs, as they are the first to recognize a need for innovation. Innovators represent 2.5 percent
of the total market share, and their acceptance brings continued advancements that increase
the ease of interface and reduce perceived cost. With continued innovation comes the approval
of the Early Adopters, the next 13.5 percent of the market. This adoption group generally
identifies as technology enthusiasts, understands the value versus the cost, and accepts the
technology once the Innovators overcome the initial limitations. With continued technological
improvements, adopting new technologies follows an S-shape adoption curve, following Met-
calfe’s law.

As an adaptation of DOI, Moore [Mo0022| has suggested a gap exists between Early Adopters
and the rest of the market. Described as a chasm, Moore implies that there is a tremendous
amount of friction that a technological movement must overcome in the early adoption cycle.
While primarily focused on product marketing, Moore’s position is that the Innovators and
Early Majority have different expectations than the remaining adoption groups, even when
initially following the S-curve of adoption. While Rogers agreed [Rog03] that there are essential
differences between adoption groups, Moore’s chasm theory does not hold with Roger’s DOI
results as he measured no recognized breaks in adoption between adjacent categories. Yet, a
technologies’ failure to innovate to the point that it can meet the majority’s expectations could

Sovereign System

100

75

50

05 d1RYS 1R

25

Innovators Early Early Late Laggards
2.5% Adopters Majority Majority 16%
13.5% 34% 34%

Figure 1.1: Categories of adopters and adoption curve, based on Diffusion of Innovations
(Rogers, 2003)

suggest why specific innovations fail to reach the masses while others succeed [RSF07).

The Technology Acceptance Model [Lam22] (TAM) posits that a specific technology’s per-
ceived usefulness and ease of use must outweigh the perceived effort required to adopt if that in-
novation is to be accepted. Costs in TAM can be monetary outflow, physical exertion, and men-
tal effort. This model aligns with the Value-based Adoption Model [Lam22] (VAM), where the
benefits, defined as usefulness and enjoyment, must outweigh the monetary and non-monetary
costs.

All three models point to similar models for adoption. New technologies must have advan-
tages over previous systems and provide more value than incumbent technologies. They must
continually innovate and become easier to use so that the majority see more value in their
application than cost, thus becoming socially acceptable. Once a great enough share of the
market perceives more benefits than difficulties, intentions to adopt convert into acceptance,
leading to a network effect that takes over a market.

Public permissionless blockchains must continue to innovate until a tipping point, where
15 and 20 percent of the population accept the technology, to reach a level of social accep-
tance for that stated network effect to take hold and accelerate adoption through the Early
and Late Majority groups [Lam22]. While there has been a tremendous focus on technological
improvements, permissionless systems face challenges as incumbent technologies, such as pay-
ment systems, continue to innovate. Private permissioned blockchains, as well as the growing
number of service providers and applications that act as custodians for digital assets, also pose
risks to the sovereign model of permissionless systems.

Sovereign System

1.2 Custodial solutions vs Self-Custody

Having custodians remove complexities helps aid adoption, and the acceptance of others helps
lead the majority to accept new technology [Rog03]. While custodians have their uses and will
play a significant role in the use of blockchain technology, the current trends suggest that the
Early Majority, representing roughly 34 percent of the population, will interact with blockchain
technology primarily through the assistance of custodians. Current trends and adoption models
suggest they will follow this path because service providers offering custodial solutions offer the
net lowest cost compared to self-custody solutions. Custodians provide significant reductions
in physical and mental effort compared to self-custody while perceptually portraying nearly the
same advantages as self-custody. While there are profound differences in advantages between
custodial services and self-custody, they are perceived as insignificant by new entrants into the
market as, generally, they are more concerned with the function of a product rather than the
underlying structure or delivery of the product. For most, the importance of self-custody is a
foreign concept that requires a tremendous amount of physical and mental effort; more than
most wish to expend when so many other areas of their daily life require focus and effort.

Businesses, institutions, and governments accept distributed ledger technology at an increas-
ing rate as they see process improvement and cost reduction advantages |Gar22|. Primarily,
these entities choose permissioned networks where the key stakeholders own the network nodes,
which provide consensus to control business logic tailored to a specific vertical or use case. As
businesses continue their acceptance and integrate this technology into their standard practices,
it will eventually lead to new product offerings on permissioned blockchains that will likely only
provide custodial offerings. For businesses, this choice to build on closed systems is evident as
they see clear advantages over public distributed ledger technology [Menl18|. However, as use of
these permissioned blockchains continue to gain support for consumer product offerings, trends
suggest the Late Majority and Laggards will primarily, if not entirely, interface with blockchain
technology through custodians.

Self-sovereign control over assets brings freedom. However, this freedom comes with many
technical complexities and risks making the barrier to entry and the burden of self-custody
high. Custodians mitigate many of these risks and remove complexities at the expense of
some freedom as the custodian controls the flow of transactions and, in most cases, maintains
ownership of individuals’ assets.

The current adoption trends towards custodial solutions may lead to the negation of self-
custody and public blockchain systems. By public systems, we are referring to public permis-
sionless blockchains, which allow anyone to participate in the network (we will refer to these as
pubic blockchains, public systems, and public networks depending upon the context). Examples
of public networks include Bitcoin, Ethereum, Zcash, and Algorand. Public systems must also
incorporate ways to protect consumer data in transactions for widespread acceptance. Public
permissioned blockchains (such as Ripple and NEO) or private permissioned blockchains (such
as Hyperledger, Quorum, or a private Ethereum side-chain) already include different levels of
data protection. While transparency and traceability are crucial for trust in public blockchain
networks, seeking ways to protect sensitive data is necessary. Companies almost unanimously
choose public and private permissioned networks for data protection. Therefore, public systems
must also include consumer protections to gain a majority of acceptance in the market.

Sovereign System

1.3 Motivation and Contributions: The Sovereign System

This paper presents a third option between self-sovereignty and custodians to address the
discussions in the previous section. We title this option the Sovereign System. On a very high
level, the Sovereign System has the following features:

e [t is rooted in identity and provides participants on public networks full ownership and
control over their data and assets, with safeguards based on identity to ensure data
protection.

e Further variations of this system ensure privacy preservation and compliance for individ-
uals and institutions.

e The structure presented removes the complexities of self-custody while ensuring the par-
ticipant always maintains full ownership of their assets and data.

e We have constructed this system to remove a significant amount of cost with advantages
for consumers and institutions so that sovereign control is a viable option for most users
who have yet to enter the market.

1.4 Roadmap

The rest of the paper is as follows.

e In Chapter [2| we present the challenges which are blocking the mass adoption of permis-
sionless networks.

e In Chapter [3, we present other issues such as data, identity, and privacy.

e In Chapter [, we present the high-level solution of the Sovereign System and general
assumptions.

e Chapter |p| presents the necessary cryptographic background.

e In Chapter [6] we present the 3 protocols which are necessary to prove the correctness of
calculations without disclosing the private information.

e Chapter [7| gives the basic definitions behind the Sovereign System.

e Chapter [§ revisits the Merkle Trees and Authentication Paths which are necessary to use
the membership proofs.

e Chapter [J presents the open source implementations of ZKSNARKs which are used in
the Sovereign System.

e Chapter [10[introduces the architectural flow of the Sovereign System.

e In Chapter we present the first use case for the recovery of private keys of other chains.

Sovereign System

Chapter [15| presents how a user can disable himself/herself.

Chapter presents how it can be easily extended to social recovery, solving the long
standing problem.

In Chapter [I7], we present how to secure the Sovereign System further.

Finally, in Chapter[L8] we present other potential and immediate use cases of the Sovereign
System.

Sovereign System

Chapter 2

Challenges Blocking Adoption of
Permissionless Networks

2.1 Importance of Public Permissionless Networks

From its inception with Bitcoin, the original intent of blockchain technology was to facilitate
a shift in ownership rights from centralized authorities directly to those interacting with the
network through a shared, decentralized ledger that was public, agreed upon, and tamper-
resistant. The importance of this technology cannot be understated; it provides a clear path to
sovereignty over one’s assets, a rare opportunity in our modern financial system. The shared
ledger also offers parties who do not know or trust one another security while transacting
through trustless mechanisms.

Innovators and many Early Adopters recognized the value of owning and controlling one’s
assets. They embraced a solution to systemic issues of trust-based financial systems that
routinely fail due to institutions’ mismanagement of assets. To achieve the freedom outlined
by the Innovators, one must be comfortable assuming self-custody of one’s assets. Blockchain
technology achieves self-custody through a secure private key generation (which can also be
represented by a passphrase), storage, and management. Digital assets on blockchain networks
exist as records on the distributed ledger, controlled by the private keys stored in wallets
and other devices by the owner. With possession of the private keys comes complete positive
control of the assets. When an individual or entity relies on a third party to secure their digital
assets, they give or transfer the ownership rights to that party, once again forming a trust-
based relationship and breaking the original intent of the technology. Therefore, innovation
in managing private keys must continue so that sovereign control on public permissionless
networks continues to gain acceptance in the market.

Sovereign System

2.2 Consumer Challenges

2.2.1 Private Key (or Passphrase) Generation and Management

While critical to the function of public blockchain networks, the generation of private keys
presents a primary barrier to entry for most of the population. The ease of account generation
through email and password and the near frictionless integration of single-sign-on technologies
have become the de facto authentication mode. These methods for managing access to services
are widely viewed as secure and painless to generate and manage. When initially presented
with the novelty of securing a private key or passphrase, coupled with the warning that this task
is critical and that one should employ the utmost seriousness in management, many entrants
may feel overwhelmed and confused. Without an understanding of the history and intent of
the technology, those new to the space, looking to explore the potential value, will find this
friction a deterrent and look for more straightforward paths to adoption through custodians.

Furthermore, many reports state that many who understand the importance of self-custody
to safeguard their private keys or passphrases from loss have made mistakes leading to perma-
nent asset loss. Current studies estimate that as much as 20 percent of the digital asset Bitcoin
(BTC) has been lost forever due to mismanagement or loss of private keys [KH20|. Assuming a
20 percent loss of the current circulating supply, approximately 3,800,000 BTC, this represents
USD 60 billion in lost value at the time of writing this paper. These assets were lost by new
entrants and those experienced in self-custody alike, so we cannot expect the early and Late
Majority, most without technical inclinations, to shoulder the burden of self-custody without
support.

2.2.2 Trust Issues

Blockchains facilitate internet transactions between unknown, untrusted parties through trust-
less mechanisms on shared distributed ledgers. This technology is secure and achieves the
intended goal. However, the early and Late Majority have different trust thresholds than the
Early Adopters. Generally, most people trust governments, institutions, and companies to per-
form the function or service they have been created to serve. If they do not trust the entity,
they at least have trust in a process or system the entity operates within to ensure that they
perform the service to minimum standards.

Decentralized wallets and applications remove the need for trust but introduce uncertainty
and ambiguity for most people accustomed to knowing who they are dealing with in transac-
tions. The trustless setup and operation of blockchain, which ensures confidence in transactions,
ironically leads those unfamiliar with how the technology works to distrust the process. Most
internet users will need more time to dive deep to understand the security features of blockchain
networks. The use of blockchain networks for illicit activities and highlighting these issues over
beneficial use cases in the public have led many to view decentralized application use and digital
assets as a space to be wary of or only viable as a speculative investment.

While some decentralized and centralized options and structures are beginning to emerge,
the need for more consumer protections, guidance on regulations, and taxation for actions
taken with digital assets in decentralized and centralized applications creates confusion. A

7

Sovereign System

long-documented history of projects launching and not delivering after receiving funding, some
pulling funds and not providing without any notice, creates chaos and drives people away from
blockchain-based applications and services.

Over the past decade, hundreds of centralized digital asset exchanges and custodians have
failed [Wis22]. In many of these cases, the assets and funds of the users who had credits from
deposits of digital assets had their assets frozen, stolen, or used to settle other company debts,
leaving many without recourse. With each occurrence, there is a call for greater enforcement of
regulations on these entities. Still, with technology moving faster than lawmakers are sometimes
capable of acting, it leaves space for further exploitation of consumers, which, in turn, drives
people away from decentralized technologies.

The traditional financial industry, and the products they provide, have many consumer
protections built into their offerings. Consumers expect certain assurances that their deposits
are safe from loss and that there are channels to address and mitigate adverse outcomes in
the event of fraudulent charges. Backstops and recourse are an option when incidents occur.
Public systems must address this directly as it is a significant practical advantage for incumbent
technologies.

2.2.3 Public Data

Public blockchains have distributed shared ledgers that act as a source of truth for all who
engage with the network. The sharing of publicly available data is one of the most important
features of blockchain. However, many participants fail to understand their lack of privacy
when transacting with known parties or sharing account information across social platforms.
We will revisit the original intent of blockchain, where entities can have trust in transactions
across the internet without knowing the other party involved in a transaction. However, as
we have reached the early adopter phase of the technology adoption curve, transactions are no
longer siloed to unknown entities. Individuals and companies that transact on public networks
expose the state and activity of their assets, including historical, present, and future data, to
anyone who wishes to research and track them.

The majority of public blockchain networks are pseudonymous. Public accounts or addresses
are used instead of the participants’ names or identifying information. With wider popularity
and sharing of information across social media, the popularity of non-fungible assets, and
broader acceptance of payments with digital assets, people are openly sharing their account
information with friends, families, businesses, and the wider general public. As soon as one
entity is aware of the public address of another (in public blockchains that do not have a
privacy component), they can trace the state and activity of the assets as the pseudonymity
of the account is broken. This feature exposes any entity that discloses its ledger account to
potential tracking, manipulation, or theft attempts. No other payment system, whether cash or
electronic, operates in such a public manner. Institutions and individuals alike will not accept
a fully open payment system where each party you trade with instantly has access to your
net worth and transaction history. Public blockchain networks will only achieve mass adoption
with consumers, businesses, and institutions when data protections are in place.

Sovereign System

2.3 Institutional Challenges

2.3.1 Institution Focus on Permissioned Networks

Governments, institutions, and businesses are fully aware of the issues caused by open data on
pseudonymous blockchain networks. In a recent survey, a majority of Fortune 500 Chief Infor-
mation Officers, and the companies they serve, were actively working, building, or designing
solutions that include a blockchain component [Gar22]. However, almost all of these solutions
will not operate on public blockchains. Instead, closed networks such as Hyperledger, Quorum,
or a private instance of a public blockchain such as Ethereum with nodes hosted by the key
stakeholders are custom-built for specific use cases. Companies building public blockchains are
primarily creating fiat ramps or custodial services as a new revenue source through exchange
and management fees. Without privacy, competitors, and possibly even trade partners, would
exploit information that should otherwise only be known to customers and suppliers and, only
then, disclose what is necessary for each particular action or transaction. One of the most
significant issues for institutions is the need for accepted industry standards, both technically
and legally, to operate either on permissioned or public networks.

2.3.2 Permissionless Networks Lack of Structure for Compliance

Governments, institutions, and businesses must operate within clearly defined structures. Struc-
tures for operation usually stem from regulations and mutually agreed-upon standards specific
to each industry or market. Institutions have implemented such measures to avoid pitfalls and
failures made by previous entities. Regulatory reporting requires proper data management to
ensure accuracy in disclosing activities to authorities. Data management also includes strict
controls for access to data and hierarchy rules across organizations, including records of access
to data.

Another primary requirement for institutions is understanding or knowing those with whom
you trade or serve. The degree to which an entity requires disclosure and diligence depends upon
the type of service administered. Typically known as know-your-customer (KYC) and know-
your-business (KYB), these checks help protect businesses, ensure regulations compliance, and
protect against bad actors. Financial institutions or those involved with the transfer or exchange
of money have additional legal and monitoring requirements, such as monitoring for money
laundering (AML) or suspicious transactions. By their pseudonymous nature, public blockchain
networks do not have business logic built into their platforms to manage data, identity, and
compliance properly. Unless an available solution exists to address all of these concerns, we
will see institutions only adopt blockchain technology to streamline backend business processes
rather than as a transformative tool to empower all participants.

2.4 Closed Networks

Permissioned networks, where key stakeholders (or validators) control the network nodes and
entrants are provisioned onto the network and managed by stakeholders, are at odds with the
original intent for blockchain. Network decentralization is essential to ensure the proper setup

Sovereign System

and execution of trustless mechanisms. Without a fair degree of decentralization, or consensus
distribution, the ledger may be subject to modification.

If the validators of a closed network are not decentralized and have common interests,
ownership and sovereign control of assets are at risk. Without decentralization, whoever runs
the nodes owns and has positive control over the network, including the assets generated and
maintained on the ledger, as logic can change, and transactions may be submitted on behalf
of a user without consent. Furthermore, in private permissioned networks, node operators and
stakeholders could construct hierarchy views to ledger data, preventing some participants from
some or all transaction views, leading to trust, transparency, and control issues.

The current trend for industry to opt for permissioned over public networks will lead many of
the Early Majority and most of the Late Majority to interact with blockchain technology solely
through permissioned networks where the node operators (stakeholders) are the custodians
maintaining positive control over all network assets. While the improved processes will help
accelerate the speed and efficiency with which entities do business, the ideal of the Early
Adopters of blockchain will not be realized.

10

Sovereign System

Chapter 3

Other Issues and Trends

3.1 Data

Businesses have developed data management practices where records for companies and con-
sumers are repeatedly duplicated and housed in numerous data centers. This practice has left
personal and financial data at risk for exposure. In the last decade, the 50 most significant
reported data breaches have exposed nearly 8 billion user accounts with trillions of records
in the hands of attackers. These breaches and the subsequent loss of customers, fines, legal
fees, and reputation loss have cost businesses and financial institutions over USD 5 billion each
year. The millions who have dealt with identity theft ramifications are on the other end of these
breaches. The energy expended to protect against and deal with data breaches is immeasurable,
representing untold lost productivity globally.

Even with the threat of potential attacks and breaches, corporations are designing plat-
forms to capture, store, process, analyze, and utilize even more consumer data. Companies
view every record stored in their databases as potential energy in new monetization schemes.
Consumers have an abstract knowledge that the data they share with service providers drives
monetization beyond the application interface. Still, the methods and frequency with which
this occurs are unknown to the user. These practices create a trust gap between consumers
and service providers, which instills an underlying distrust, whether conscious or not, in our
internet experience.

3.2 Identity

Furthermore, a trend is emerging toward integrating identity into every action, from financial
services, travel, telecommunications, e-commerce, social platforms, healthcare, gaming, and
more. While the authors of this paper agree that identity should be the root of all interac-
tions, the implementation method is of concern. Suppose identity is the key in all interactions
connected to the internet. In that case, the individual, or business, should have a majority, if
not complete control, of their identity. Suppose identity data is left to third parties to manage
in a centralized fashion. In that case, abuses will undoubtedly lead to disenfranchisement and
non-equitable treatment of people groups based on algorithms, prevailing biases, or plans laid

11

Sovereign System

out by decision-makers.

3.3 Privacy

Privacy, or protecting sensitive identifying information, is a fundamental right that all entities
should enjoy. Entities can give up this right by abusing systems or freely sharing information.
However, disclosure and use of personal or corporate data should be up to the owner or creator
of that data and not used or manipulated without consent. Our current information age is
opening us to a reality where privacy is impossible due to the proliferation of collection and
processing of our PII, data, and physical and online interactions.

3.4 Decentralized Identifier Ambiguity

Public, decentralized ledgers, databases, and the transactions on them represent an opportunity
for consumers and businesses to regain trust in their internet activities. These tools can also
empower increased ownership over personal and financial activities and data. Self-sovereign
identity has emerged as a potential answer to the identity issue. A significant body of work
now exists with many proofs-of-concept, working applications, and technical standards set
forth by World Wide Web Consortium (W3C) for Decentralized Identifiers [Con22| (DIDs).
However, solutions must include a well-defined structure to ensure data integrity. Sources of
identity claims can range from verified issuers to self-issued. Data linked to these claims can go
from SOC2-compliant storage to not being stored by any entity or initially non-existent. This
ambiguity leads to confusion and misunderstanding over the potential weight of a claim. Unless
a previously agreed-upon path where a verifier recognizes and accepts claims from an issuer
exists, verifiers will need to expend a great deal of energy to source the validity of a claim. In
addition, the lack of precise data management standards for handling, storage, and access can
lead to further confusion and friction.

Flexible frameworks for DIDs coupled with pseudonymous blockchains present two issues.
First, when an individual or entity can spin up as many claims from as many sources as they
choose, the weight of all claims is reduced. Second, suppose an individual’s public account holds
a DID and data or assets. In that case, the holder of that claim will expose certain identifying
information and the state and movement of their assets or transactions to outside parties. This
exposure leads, once again, to privacy issues on public networks.

12

Sovereign System

Chapter 4

Solution Overview

4.1 Sovereign System

We present a structured asset custody and data management solution situated between self-
sovereign and custodial models. This framework, with its foundation rooted in the unique
identity of each participant, provides users complete control of their data and assets, protections
against asset loss, account management, and enhanced mechanisms for preserving privacy on
public networks. The following is a high-level overview of the Sovereign System.

4.1.1 Initialization

A structured approach outlines each network function and each entity’s specific role within the
network. Each entity must meet particular requirements to interact with the system.

4.1.2 Registration

Regardless of function, each entity that joins the network is considered a Member of the network.
Each Member must act in good faith to support the network and its Members. Each Member
must complete a unique identification process, resulting in a unique identity (uID) on-chain.
This process occurs in a closed channel between a Validator and a potential Member. The
purpose of the process is to ensure that each Member has only one individual account on the
network. This process ensures network integrity and validates the network as a trust layer over
public blockchains.

4.1.3 Secure communication between Member and Validator

There is end-to-end secure communication between Member and Validator. Namely, no other
entity can engage in or access information, identifying or otherwise, sent between these two
entities.

13

Sovereign System

4.1.4 Verification Checks by the Network Participants

Upon creating ulD, the Validator returns the encrypted identity credentials to the Member.
The Member and Validator send zero-knowledge proofs to the Producer that this event was
successful and request the Producer admit a new Member to the network. Before admission,
the Producer reviews and verifies claims made by the Validator and Member.

4.1.5 Key Share of Main Account through Personal Security Ques-
tions

In addition to the proof of uniqueness, the Member also commits to a key share of their Main
Account with participating Organizations to ensure fallback measures are in place to recover
their accounts if they lose access to their private keys. Key share generation includes some
personal and confidential information of the Member. The key share design ensures that even
if all participating Organizations collude to gain access to a Member’s accounts, they do not
possess enough key shares to accomplish this action. Involving organizations prevents any
internal or external adversaries to brute-force/attack to the key shares of the Main Account.

4.1.6 Creation of DID and its Protection through On-Chain

After confirming the matching claims made by the Member, Validator, the Producer, and
the Organizations, the Producer creates and submits a DID object to decentralized storage
containing all the proofs, encrypted identity credentials, encrypted key share information, and
all other general setup items. Anyone can publicly verify that each process was calculated
correctly. The Producer then submits a transaction on-chain to register this Content [Dentifier
(CID), a hash of the DID. This certification establishes an official record on-chain of the Main
Account as part of the network.

4.1.7 Accumulation of Main Account DID objects through Merkle
Trees

Main Account DID objects (i.e., the public key of the Main Account) are added to a universal
Merkle Tree (called DID Merkle Tree). Namely, whenever a new Member joins the network,

its public key is added to the DID Merkle Tree, and the new DID Merkle Root is updated
on-chain. This way, all users can be integrated and accumulated in a single DID Merkle Root.

4.1.8 Creating Associated Accounts through Private Membership Proof

Once the DID object of a Main Account has been created, its owner can privately use it for
different use cases without disclosing any private information about its identity. This privacy-
preserving feature is accomplished through the creation and use of Associated Accounts. More
concretely, a Member first creates an Associated Account and proves that it is generated de-
terministically from their Main Account and is also privately linked to the current DID Merkle

14

Sovereign System

Root. In this way, anyone can publicly verify that this new Associated Account is valid and
part of the Sovereign System.

4.1.9 Selective Disclosure through Associated Accounts

A Member can re-hash (obfuscate) the Main Account DID object field, which contains their
credential attributes and creates proof that this obfuscated value is privately linked to the
current DID Merkle Root. The user can now selectively disclose their credentials’ attributes
(either confidentially or outright) along with authenticity proofs.

4.2 General Assumptions

e The underlying cryptographic primitives (e.g., elliptic curves (ed25519, JubJub), hash
functions (SHA256, Poseidon), ZKSNARKs, Y-proofs, ElGamal Encryption, Pedersen
Commitments) are assumed to be secure.

e The participating parties are supposed to utilize secure random number generators.

e The Algorand public blockchain used to implement the Sovereign System is assumed to
be secure.

15

Sovereign System

Chapter 5

Cryptographic Background

5.1 Elliptic Curves

As in Bitcoin, secp256kl |[Res10] will be used. The elliptic curve domain parameters over F,
associated with a Koblitz curve secp256k1 are specified by the sextuple T' = (p,a,b, G, n,h)
where the finite field I, is defined by:

p =FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFE FFFFFC2F
:2256_232_29_28_27_26_24_1

The curve E : y*> = 2° + ax + b over F,, is defined by:

a = 00000000 00000000 00000000 00000000 00000000 00000000 OOOOOO00 OOOOO000
b = 00000000 00000000 00000000 00000000 00000000 00000000 OOOOOO00 OO000007T

The base point GG in compressed form is:

G =02 T9BEG66TE F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9
S9F28158 16F'81798

and in uncompressed form is:

G =04 T9BEG66TE F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9
D9F28158 16F 81798 483ADATT 26 A3C465 5DAAFBFC 0E1108A8 FD17B448
A6855419 9C47DOSF FB10D4B8

Finally the order n of G and the cofactor are:

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCEG6 AF48A03B
BFD25E8C' D0364141
h =01

16

Sovereign System

5.2 Hash Functions

A hash function
H:{0,1} — {0,1}*

takes a string of arbitrary length as input and produces a fixed-size output & (i.e., hash function
“compresses” the input).
On a high level, it has the following properties:

e Deterministic: The same message always outputs in the same hash.
e Efficient: It is very fast to compute the hash value for any given message.

e Non-Correlation of Input and Output (Avalanche effect): A small change in a
message should change the hash value dramatically such that the new hash value is indis-
tinguishable from the old hash value (i.e., statistically indistinguishable from random).

e One-way (Second Preimage Resistance): Given H(x), it is infeasible to find = except
by trying all possible messages (except with negligible probability).

e Collision Resistance (Strong Collision Resistance): No efficient adversary can find
two arbitrary messages x and y such that = # y and H(z) = H(y).

SHA256 is used in Bitcoin while Keccak (SHA-3) is used in Ethereum. However, these
functions are extremely expensive inside a SNARK circuit. Therefore, in practice, SNARK
frindly hash functions such as Poseidon |[GKR™21]|, MIMC [AGR™16|, Pedersen hash |[ZCalT],
and Sinsemilla [ZCa21]| are quite efficient compared to SHA family hash functions. Note that
Sinsemilla is an instance of the Pedersen hash function optimized for table lookups in custom
gates. The security properties of Sinsemilla are similar to Pedersen hashes, however, it is not
designed to be used where a random oracle, PRF, or preimage-resistant hash is required. The
only claimed security property of the hash function is collision-resistance for fixed-length inputs.

In the Sovereign System, Poseidon will be used in ZKSNARK proofs due to its security

and efficiency features. Also, in case of security questions and answers, slow hashes such as
PBKDF2 will be used.

Remark. Whenever needed, output of the has functions can be interpreted as a point on the
underlying curve. How this encoding takes place is an implementation matter.

5.3 Pedersen Commitment

5.3.1 Commitment Schemes

Definition 5.3.1. Let Commit : {0,1}* x{0,1}* — {0, 1}* be a deterministic polynomial time
algorithm, where k is a security parameter. A (non-interactive) commitment scheme consists
of two protocols between a sender and a receiver:

17

Sovereign System

Commitment phase:

The sender
1. chooses (or is given) a secret message m € {0, 1}*.
2. chooses a random secret € {0, 1}*.

3. produces a commitment Com = Commit(m,r) by applying some public method (i.e., the
commitment algorithm Commit) defined by the scheme.

4. makes C'om public.

Reveal phase:

1. The sender reveals m and r.

2. Given Com,m,r, the receiver can check if indeed Commit(m,r) = Com.

5.3.2 Pedersen Commitment Scheme

Pedersen Commitment uses a public group G of large order ¢ in which the discrete logarithm
is hard, and two random public generators G and P (such that the discrete logarithm is not
known to any party).

Commitment phase:

The sender

1. chooses (or is given) a secret message m € {0,1}* taken in some public message space
with at least two elements

2. chooses a random secret r € Z,
3. produces from that m and r a commitment Com = Commit(m,r) = mG + rP.

4. makes C'om public

Reveal phase:

1. The sender reveals m and r.

2. Given C'om,m,r, the receiver can check if indeed mG + rP = Com.

5.4 Threshold ElGamal Encryption

Suppose we have a threshold ElGamal cryptosystem (t,n) over an Elliptic Curve E, where
p is a large prime and a secret is shared between n parties P;s while only if ¢ parties could
reconstruct it.

18

Sovereign System

5.4.1 Setup and Distribution of Private Key Shares Through a Dealer

The following Feldman’s (¢, n)-threshold VSS scheme for sharing a secret s € Z, is defined as
an extension of Shamir’s scheme [Sch22].

Distribution

e (G is a generator point of £, with order ¢ (i.e., ¢ = |G|).
e The dealer has a public and private key pair (pky, skq).
e FEach participant already knows pk,.

A dealer chooses a polynomial f(x) = ag + a1z + ...+ a;_12'" " € Z,[z] where a; € Z,
with j € [0,--- ,t —1].

X = s -G is the public key where s = ay.

The dealer computes and distributes the secret private share s; = f(i) to P; for all
i€ll,---,n].

The dealer finally broadcasts the commitments B; = a; -G for all 0 < j <t —1.

The dealer broadcasts Signg,(h1, -+ , hy,) where h; = 5;,G.

Verification of the shares

Upon receipt of share s;, each participant P; verifies its validity by evaluating the following
equation:

t—1
% G=%iB
=0
Note that this equation holds if s; = f(i) because

t—1

si-G=f(0)-G= Zaﬂj G= Zaﬂ] G= sz

7=0

Therefore, any attempts at cheating by the dealer can be detected by the participants.

Reconstruction

e The secret s = f(0) is recovered as in Shamir’s scheme from ¢ valid shares.

Remark (Reconstruction of the Private Key through Lagrange Interpolation).

t—1 t—1

J
5~

L # .

S;

N
Il
o

J

19

Sovereign System

5.4.2 Setup and Distribution of Private Key Shares without a Dealer

The goal now is to let parties Py, - - -, P, jointly generate the random polynomial f(z). This is
basically done by having each party P;, 1 < i < n picking a random polynomial f;(z) € Z,[x] of
degree at most ¢ — 1 (to achieve (t,n) threshold security), and then defining f(z) = Y212} fi(x).
Let again G be a generator point of E, with order ¢ (i.e., ¢ = |G]).

1.

Each party P; runs an instance of Feldman’s VSS scheme by choosing a random ¢t—1-degree
polynomial, using s; € Z as a secret value (as described in Section [5.4.1). Namely, Party
P; plays the role of the dealer, and parties Py, ---, P, play the role of the participants.
Hence, P; plays a double role, namely as a dealer and as a participant. Let f;(z) € Z,|x]
be a random polynomial of degree t — 1 generated by a party P; where f;(x) = a;o+apx+
R (lit_lfL’t_l.

Each party P; broadcasts the commitments < B;; = a;; - G : 0 < j <t —1 > along with
s; - G, where a;; are the coefficients of its private polynomial f; and s; = f;(0) = a;o. Let
Hi = Bi0~

For 1 < 4,57 < n, each party P; privately shares s;; to party P; where s;; denotes the
share of s;. Note that s;; = fi(j), and since f(z) = S_'_] fi(x), it follows that z; = f(i).

Each party P; verifies the shares he received by checking for i =1, --- ,n:

If a check fails for an index ¢ then P; broadcasts a complaint against P;.

Party P; reveals share s;; if it receives a complaint against him by party P;. If any of the
revealed shares s;; fails to satisfy previous check, then P; is disqualified. Let us define
the set QUAL # () as the set of qualified players.

Each party P; calculates the overall public key H = ZieQU Az, Hi

Each party P; sums all its received shares s;; to obtain its share z; — 23;11 si; of the

overall private key x4 = ZieQU 4z Si (which is not known by anyone).

Each party P; broadcasts its verification key vk; = ZieQUAL sij-G = x;-G and Signg, (vk;)
where sk, is its signing private key which was certified by a Trusted Certificate Authority.

5.4.3 Threshold ElIGamal Encryption

The following encryption algorithm outputs C' = Encp(m) where H(= z - G) is a public key
and M is a message over the given field.

1.

*
r S Zp

20

Sovereign System

2. A=r-G
3. B=M+r-H
4. return C' = (A, B)

5.4.4 Threshold ElIGamal Decryption

Let (A, B) = (rG, M + rH) be a ciphertext where r € Z,. The threshold decryption protocol
is follows:

1. Each party P; takes A as input and uses its private share x; to produce d; = z; - A along
with a ¥-proof showing that log H; = log, d; (using EQ proofs presented in Section [6.5).

2. Let Q be a set of t parties who produced valid d; values. Then, the plaintext M can be

recovered by computing:

B—) Xi-di=B-x-A=M.
1€Q

5.5 Elliptic Curve Integrated Encryption Scheme (ECIES)

Let H : G — {0,1}* be a hash function that maps the elements of G to bit strings of length k.
The hashed ElGamal encryption algorithm is as follows [GKR04]:

5.5.1 Setup

1. Generate a random number x €p Z, and compute z.G.

2. The public and private key pair is (pk, sk) = (z.G, x).

5.5.2 Encryption
Given the public key pk and a message m:
1. Generate a random number s €g Z, and compute R = s-G.
2. Compute the shared secret P, where P = (P,, P,) = s.pk.
3. Compute kg||ky = Hash(P,) where Hash is a hash function like SHA512.

4. Compute the ciphertext as C' = Ency,(m) where Enc is a symmetric encryption scheme
like AES256.

5. Compute the tag of the encrypted message d = M ACy,,(C) where MAC is a hash-based
message authentication code like HMAC-SHA256.

6. Output R||C||d.

21

Sovereign System

5.5.3 Decryption
Given the private key sk and a ciphertext R||C||d:

1. Derive the shared secret P, where P = (P,, P,) = zR.
2. Derive the keys: kg||ky = Hash(P,)
3. Use MAC to check the tag and output failed if d # MAC,, (C).

4. Decrypt the ciphertext: m = Decy,, (C).

Remark. The Sovereign System uses ECIES due to its practical ECC encryption scheme and
strong security property. The Sovereign System extends ECIES to achieve (2,2) encryption
scheme where two entities public keys’ are used simultaneously. The entities individually could
only compute the private shares (but not the whole key) during the protocol executions and
are expected to share them with users privately, so that they can recombine and obtain the
whole key.

5.6 Digital Signatures

5.6.1 Edwards-Curve Digital Signature Algorithm (EdDSA)

EdDSA |J117] is currently used by Cardano, NANO, Stellar Lumens, WAVES, and Libra, and
will be supported by many more blockchains. Compared to ECDSA’s signing and verification
steps, EADSA is simpler and easier to understand and to implement. Both signature algorithms
have similar security strength for curves with similar key lengths. The EADSA algorithm is
slightly faster than ECDSA for the most popular curves like edwards25519 and edwards448.
Unlike ECDSA, it is not possible for EdADSA to recover the signer’s public key from the signature
and the message.

EdDSA is a digital signature system with 11 parameters. The generic EdADSA digital signa-
ture system with its 11 input parameters is not intended to be implemented directly. Choosing
parameters is critical for secure and efficient operation. Instead, you would implement a partic-
ular parameter choice for EADSA (such as Ed25519 or Ed448). Therefore, a precise explanation
of the generic EADSA is thus not particularly useful for implementers. For background and
completeness, a succinct description of the generic EADSA algorithm is given on RFC8062
[JLI7].

Public Parameters

e Finite field IF, over odd prime power q.

e Elliptic curve E over F, whose group E(F,) of F,-rational points has order #E(F,) =
2¢¢ where / is a large prime and 2¢ is called the cofactor. [T]

22

Sovereign System

e of base point G € E(F,) with order /.

e of hash function H with 2b-bit outputs, where 2°=! > ¢ so that elements of F, and
curve points in E(FF,) can be represented by strings of b bits.

Keys

e Secret key: b-bit random string = (where b = 256).
L H(x): SHA512($) — (ho, Ce 7h2b—1)-
e Derive integer s = 2" + 37, ., . 2'h; (s is a multiple of 8).

— Use Hp(x) the first half of H(x) to generate the public key by setting the first three bits of the first octet
and the last bit of the last octet to zero and setting the second last bit of the last octet to one. Hence, we
set ho = h1 = ha = hp—1 = 0 and hy_o = 1. Determine from this new bit string as an integer s € Fy using
little-endian convention.

e Compute P = s.G.

— The public key is encoded as compressed EC point: the y-coordinate, combined with the lowest bit (the parity)
of the x-coordinate. For Ed25519 the public key is 32 bytes. For Ed448 the public key is 57 bytes

e Public key: Encoding P of P = (zp,yp) as yp and one (parity) bit of zp (needs b
bits).

e Compute P from P: xp — + /(y% — 1)/(dys + 1).

— The private key is generated from a random number, called seed (which should have similar bit length, like
the curve order). The seed is first hashed, then the last few bits, corresponding to the curve cofactor (8 for
Ed25519 and 4 for X448) are cleared, then the highest bit is cleared and the second highest bit is set. These
transformations guarantee that the private key will always belong to the same subgroup of EC points on the
curve and that the private keys will always have similar bit length (to protect from timing-based side-channel
attacks). For Ed25519 the private key is 32 bytes. For Ed448 the private key is 57 bytes.

HashEdDSA Signing

1. Input: (secret key =, message: M).

[\

. Compute (hg,...,hyp_1) =H(x).
3. Derive integer s = 27 + 3", +2'h; (s is a multiple of 8).

Hp(x) = o[l - - |[hop—1

=

23

Sovereign System

5. Deterministically compute r = SHA512(Hg(z)||SHA512(M)) € {0,---,2? —1}.

® This r will be 64-octets long, and we treat it as a little-endian integer modulo q.

6. Calculate the public key point behind r by multiplying it by the curve generator:
R=r.G.

7. Calculate h = SHA512(R||P||SHA512(M)).
8. Calculate S =r + hs mod /.

9. Return the signature (R, S), with S the b-bit encoding of S

® The digital signature is 64 bytes (32 + 32 bytes) for Ed25519 and 114 bytes (57 + 57 bytes) for Ed448 (confirming
that the signer knows m and z).

Verification

1. Signature (f%, S), public key P, message M

2. Parse P from P, R from R, and S from S.

3. Verify that s lies in the half open interval [0, ¢].
4. Calculate h = SHA512(R||P||SHA512(M)).
5. Calculate 235.G = 23.R + 231h.P.

6. Check S’ = S in E (and reject if parsing fails or equation does not hold).

Edwards Curves: Point Addition for ¢ =5 mod 8

The following algorithm is taken from [JLI7, Section 5.1.4]. For point addition, the following
method is recommended. A point (x,y) is represented in extended homogeneous coordinates
(X,Y,Z,T), withe = X/Z,y=Y/Z, xxy =T)Z.

The neutral point is (0, 1), or equivalently in extended homogeneous coordinates (0, Z, Z,0)
for any non-zero Z.

The following formulas for adding two points, (23,y3) = (z1,y1) + (22,42), on twisted
Edwards curves with a = —1, square a, and non-square d are described in Section 3.1 of
[HWCDO08, HDO08|. They are complete, i.e., they work for any pair of valid input points.

e A= (Y] — X1)x (Y — X))

24

Sovereign System

e B=(Y1+X1)x (Yo + Xo)
e C =T *2xdxTy
o D=/1%x2%x 1,

e F=B-A

o '=D-C

e G=D+C

e H=B+ A

o X3=ExF

e Y3=GxH

e I3=ExH

o Z3=FxG

Edwards Curves: Doubling

The following algorithm is taken from [JLI7, Section 5.1.4]. For point doubling, (z3,y3) =
(x1,11) + (21, y1), one could just substitute equal points described in Section m (because of
completeness, such substitution is valid) and observe that four multiplications turn into squares.

o A= X?
o B=Y;
o O =2x72
e H=A+1HB

E=H— (X, +Y)?

e G=A-1B
o F=C+G
o Xo=ExF
o Vs=GxH

25

Sovereign System

.T3:E*H

Edwards Curves: Modular Inversion mod p = 2448 — 2224

For inversion modulo p = 2% — 2224 _ 1 it is recommended to use the identity z=! = 2P~
mod p. Inverting zero should never happen, as it would require invalid input, which would have
been detected before, or would be a calculation error.

5.6.2 Edwards Curves: Square root for ¢ =5 mod 8
The following algorithm is taken from [AFH20, Appendix F.2 ¢ =5 (mod 8)].

m

Parameters: F, a finite field of characteristic p and order ¢ = p™.

e Input: x, an element of F.

e Output: z, an element of F such that 22 - x, if x is square in .

Constants:

1. ¢; = sqrt(—1) € F, i.e.,cd == -1 in F.

2. co = (¢g+3)/8. # Integer arithmetic
Procedure:

1. tvy = x*

2. tvg =tv; x ¢

3. e=(v?) ===
4. z=CMOV (tvy,tvy,e) # If e is False, CM OV returns tvy, otherwise it returns tv;.
5. return z

26

Sovereign System

To prevent against timing attacks, this operation must run in constant time, without re-
vealing the value of c. Commonly, implementations assume that the selector ¢ is 1 for True or
0 for False. In this case, given a bit string C', the desired selector ¢ can be computed by OR-ing
all bits of C' together. The resulting selector will be either 0 if all bits of C' are zero, or 1 if at
least one bit of C'is 1.

Ed25519

Ed25519 is the underlying curve of the EADSA signature scheme using SHA512 and Curve25519
[ILHT16] where

q = 2%°—19 (p of edwards25519 in [LHT16])

c: base 2 logarithm of cofactor of edwards25519 [LHT16] (i.e., 3).
e n =254

e E/F, is the twisted Edwards curve

121665 , ,
121666

e d of edwards25519 in [LHT16] (i.e., -121665/121666=3709570593466943934313808
3508754565189542113879843219016388785533085940283555)

=1

e a=-—1

e B=(X(P),Y(P)) of edwards25519 in |[LHT16]
(i.e., (15112221349535400772501151409588531511454012693041857206046113283
949847762202,463168356949264781694283940034751631413079938662562256157
83033603165251855960))

e (: the order of edwards25519 in [LHT16] where ¢ — 225% + 277423177773723535358
51937790883648493.

e B is the unique point E(F,) whose y coordinate is 4/5 and whose = coordinate is
“positive” where “positive” is defined in terms of bit-encoding.

— “positive” coordinates are even coordinates (least significant bit is cleared)

— “negative” coordinates are odd coordinates (least significant bit is set)
e His SHA-512 (SHA — 512(dom2(phflag, context)||z) [Hrlll).
e b= 256.

e PH(x) = x (identity function).

27

Sovereign System

The curve E(F,) is birationally equivalent to the Montgomery curve known as Curve25519.
The equivalence is

r = 2\/Z186664,
v

u—1
u—+1

y:

Ed448

Ed448 is the underlying curve of the EADSA signature scheme using SHA512 and Curve25519
ILHT16| where

o ¢ =218 221 _1 (pof edwards448 in [LHTT16])

¢: base 2 logarithm of cofactor of edwards448 [LHT16] (i.e., 2).

o n — 447

d of edwards448 in [LHT16] (i.e., - -39081)

e 0o =1

B = (X(P),Y(P)) of edwards448 in [LHTL6]

(i.e.7 (224580040295924300 18760433409989603624678964163256413424612546168
6950415467406032909029192869357953282578032075146446173674602635247710
,298819210078481492676017930443930673437544040154080242095928241372331
506189835876003536878655418784733982303233503462500531545062832660))

e /: the order of edwards448 in [LHT16| where
¢ = 2%46 _13818066809895115352007386748515426880336692474882178609894547503885.

o His SHAKFE256(dom4(phflag, context)||x,114) where SHAKE256(x, y) is the y first
octets of SHAKE256 [FP18] output for input z.

e b= 456.

e PH(x) = x (identity function).

The SHA-3 family consists of four cryptographic hash functions, called SHA3-224, SHA3-
256, SHA3-384, and SHA3-512, and two extendable-output functions (XOFs), called SHAKE128
and SHAKE256. Ed448 uses SHAKE256 as a hash function, even if SHAKE256 is specifically
defined not to be a hash function. The first potentially troublesome property is that shorter
outputs are prefixes of longer ones. This is acceptable because output lengths are fixed. The

28

Sovereign System

second potentially troublesome property is failing to meet standard hash security notions (es-
pecially with preimages). However, the estimated 256-bit security level against collisions and
preimages is sufficient to pair with a 224-bit level elliptic curve [JL17]

29

Sovereign System

5.7 Recommended Curve Sizes [MSS17], [BD18]

Pairing Friendly Curves: Except the broken parameters, Tate and Ate pairings pre-
sented in Table A.3 in [IEE13] can be chosen for the curves Gy, Gy, Gr. Apart from BN
curves, BLS12 and KSS curves are also recommended to be used for efficiency reasons
[IMSS17, Section 1], [BD18, Section 2.

e The current state of-the-art Curve Sizes: According to the most recent paper of
Menezes and Barbulescu [MSS17, Section 6.3], for the 128 bit security, if BN curve with
embedding degree 12 is used then the size of G; should be 383 bits and the size of Gy
should be 4596 bits Pl

Elliptic curve points: P € G, = E(F,), and Q € Gy = E(F).

Evaluates e(P, Q) as an element in the multiplicative group F .

The order n is a large prime number such that n|#E(F,) and ged(n,p) = 1. The integer
k is known as the embedding degree of the curve and is the smallest integer k such that
nlg® — 1.

5.7.1 Jacobian coordinates

It is often convenient to represent points (z,y) on E(F) in Jacobian projective coordinates
(X :Y : Z), which are defined as follows:

(,y) = (z:y:1)
(X:Y:2)—= (X/Z2%Y)Z?)

Projective coordinates are generally useful to avoid computing inversions, and Jacobian
coordinates give some of the fastest group operations for this curve shape. Moreover, the point
addition law in this representation is independent of the coefficients of the curve equation.

5.7.2 Parameters

o u = —(02d201000000010000
o k=12

e ¢ — 0xla0l11ea397fe69a4blba7b6434bacd764774b84£38512b£6730d2a0£6b0£6241
eabfffeblb3ffffbOfeffffffffaaab

’The parameters in IEEE Std 1363.3-2013: IEEE Standard for Identity-Based Cryptographic Techniques
using Pairings are outdated and no longer correct. For example, if BN curve with embedding degree 12 was
used then 256 bits for G; and 3072 for Go would be used. These sizes are no longer secure.

30

Sovereign System

o 7 = 0x73eda753299d7d483339d80809a1d80553bdad02fffebbfeffffff££00000001
E(F,) =y =2>+4

Foo :=Foli]/(2® + 1)
E'(Fp)=y*=2"+4(i + 1)

5.7.3 Sizes:
e private key (32 bytes): Big endian integer.

The private key is just a scalar that your raise curve points to the power of. The subgroup
order for G; and G, is r 225, so for private keys higher than this the point just wraps
around. Therefore, useful private keys are < 22° and fit into 32 bytes.

e pubkey (48 bytes): 381 bit affine x coordinate, encoded into 48 big-endian bytes. Since
we have 3 bits left over in the beginning, the first bit is set to 1 if and only if y coordinate
is the lexicographically largest of the two valid ys. The public key fingerprint is the first
4 bytes of SH A256(serialize(pubkey)).

e signature (96 bytes): Two 381 bit integers (affine x coordinate), encoded into two 48
big-endian byte arrays. Since we have 3 bits left over in the beginning, the first bit is set
to 1 if and only if the y coordinate is the lexicographically largest of the two valid ys.
(The term with the 7 is compared first, i.e. 3i +1 > 2i + 7). The second bit is set to 1 if
and only if the signature was generated using the prepend method, and should be verified
using the prepend method.

The signature is a point on the G, subgroup, which is defined over a finite field with
elements twice as big as the Gy curve (G, is over F 2 rather than F,. 2 is analogous to
the complex numbers).

5.8 Ed25519 Clamping and Selection of Scalar to make
compatible with JubJub

5.8.1 Selection of Scalar in ED25519

In Ed25519 signatures, some “bit-twiddling” is done on the private key and this process is
called “clamping”. See [Cra20] for further details. Clamping is the action of applying some
deterministic manipulation to some input bytes, typically using bitwise operations. It can be
used for many purposes, but one common use is to force arbitrary values into a particular
integer range by setting or zeroing bits in a particular way.

First, in the key generation, it derives the public key using the following logic. Ed25519
also requires that you SHA512 the seed and use the first 32-bytes for the clamp. That step is
done simply to protect against bad seed randomness which is non-uniform.

31

Sovereign System

x|ly := shabl12.Sumb12(seed)
x[0] &= 248
x [31] &= 127
x[31] [|= 64

Next, we calculate scalar = x mod ord(ed25519) in the standard reference implementation.
However, if scalar is larger than the order of the subgroup for JubJub (i.e.,
¢ = 2736030358979909402780800718157159386076813972158567259200215660948447373041),
then start over with a new random seed to calculate the scalar.

Clearing the lowest three bits. In the first line, we are “clearing” or “zeroing” the lowest
three bits of the first byte. This works because if we & with 0, it will always be 0 in the output,
but if we & with 1, it will retain whatever value was already there.

Remark. Cleaning these bits does something known as “clearing the cofactor”. A cofactor is
one of the parameters that make up an elliptic curve. The number of points on the elliptic curve
can be described as = r*h where r is the prime order of a subgroup and h is the cofactor. If the
cofactor is 1, like in many of the standardized curves, we do not need to worry about. However,
if it is not one, careful consideration needs to be made for its implications in cryptographic
schemes to avoid a few types of attacks, notably small-subgroup attacks and more nuanced
malleability attacks that affected Monero.

Setting the highest bit. The second line and third line work together to clear the 256th
bit and set the 255th bit to 1. The second line does the clearing using the same logic as the
first and the third uses | to “set” a specific bit. It works using similar logic to how & works, if
we | with 0 we retain whatever value was there, and if we | with 1 it will always produce 1, so
we can set a specific bit.

Remark. The purpose of this is to ensure that the highest bit is always at a fixed position.
X25519 only deals in x-coordinates and there is a simple & efficient way to implement scalar
multiplication of z-coordinates known as the Montgomery ladder. The problem with this is
that some implementations implement it in variable-time based on the position of the highest
bit. To avoid implementations having to care about this the creator of the ed25519 (Bernstein)
decided to make this part of the standard so that if the implementation is variable time in that
way, it will run in constant time because of this clamping.

5.8.2 Additional Changes in JubJub Clamping

JubJub Clamping is currently using Blake function is the reference implementation, However,
in the Sovereign system, we replace SHA512 with the Blake function.

32

Sovereign System

Chapter 6

Honest- Verifier Zero Knowledge
(2-proofs)

See [Sch22] for further details of the protocols presented below.

6.1 Schnorr’s Protocol: Proving the knowledge of r such
that P =rG

Proof Generation

eqProofGen(public keys: P,G,
random values: 7)

1. uy <8 2

2. ug 8 7,

3. A = u, G

4. Ay = usG

5. ¢1 = hash(A1, Ay) and ¢y = hash(As, Ay).
6. wy =u; +cr

7. wo9 = Ug + Cor

8. return (Aj, Ag, wy, ws)

33

Sovereign System

Verification

eqProofVer (proof (A, As,wy,ws),
public values P,G)

1. ¢; = hash(A;, As) and ¢y = hash(As, Ay).
2. The proof is valid if the following equalities hold, invalid otherwise:

L] ’LU1G = Al +01P
L] ’LU2G = A2+02P

6.2 Proving the equality of messages in different Pedersen
Commitments

Prove in (v,r) in C' = vG + rH is consistent with that in the second part of the ciphertext
(o, B) = (s - G,vG + sP).

Proof Generation

eqProofGen(public keys: G,P,H,C, [,
random values: w,r,S)

1. uy <8 Z

2. ug s 7

3. us «$ 2

4. Ay = G+ usH

5. Ay = u G+ usP

6. ¢ = hash(G,H,P,C, 3, Ay, As).
7. w; = uy +vc

8. wy =ug +rcC

9. w3 =usz + sc

10. return (Aj, Ag, wy, wy, ws)

34

Sovereign System

Verification

eqProofVer (proof (A, As,wy,ws),
public values G,P, H,C,[3)

1. ¢ =hash(G,H,P,C,D, Ay, A,y).
2. The proof is valid if the following equalities hold, invalid otherwise:

[) w1G+w2H:A1+cC’
[) ’LUlG—F’LU;;P:AQ—'—Cﬁ

6.3 Proof of Knowledge in a Pedersen Commitment

The following proof proves knowledge of z,y such that B = G + y P, for given B.

Proof Generation

PedersenProofGen(public keys: G,P,B,
secret values: x,v)

1. uy <8 Z;

2. ug 8 7

3. A=u1G + u P
4. ¢ = hash(A)

5. r=u; +cx

6. s=uy+cy

7. return (A, r,s)

Verification

PedersenProofVer (proof (A,r,s))
1. ¢ = hash(A)

35

Sovereign System

2. The proof is valid if the following equality holds, invalid otherwise:

e rG+sP=A+cB

6.4 AND Composition of Schnorr’s Protocol

We use Schnorr’s protocol with equality composition which is basically an and-composition
with common witness [Sch22].

Given two relations Ry = {(vi;wq)} and Ry = {(ve;wq)}, a X - protocol is obtained for
relation Ry A Ry := {(v1, vo;wy, we) : (v1;w1) € Ry, (vg;w2) € Re} by running a X-protocol for
Ry and a Y-protocol for Ry in parallel, using a common challenge (assuming that both protocols
use the same challenge space). Given two public keys hy and hg, a proof of knowledge of both
log, hy and log, hy is obtained, by running two instances of Schnorr’s protocol in parallel, using
a common challenge.

Proof Generation

ANDProofGen(public keys: hq,hq,
random values: 71,7y)

1. uy < Z,

2. ug <8 Zj

3. A = u,G

4. Ay = usG

5. ¢ = hash(A;, As)
6. wy =u +cry

7. weg = Ug + CTy

8. return (Ay, Ay, wy, ws)

Verification

ANDProofVer (proof (Aj, Az, wy,ws))

36

Sovereign System

1. ¢ = hash(A;, As)
2. The proof is valid if the following equalities hold, invalid otherwise:

L] ’LUlG = Al +Ch1
L lUQG = AQ+Ch2

6.5 Equality Composition of Schnorr’s Protocol

Let Encpy,
that

associate (m) — (A’ B) — (TG, mG + TP) where pkassociate = P with P = zG. We prove
{(P,G,A,B7m;7ﬂ) A= rG’B_mG — TP}

Given two public values A and B — mG, we prove that both log. A and logp(B — mG@G) is
equal, by running two instances of Schnorr’s protocol in parallel, using a common challenge.

Proof Generation

EQUALITYProofGen(public values: P,G,A, B,m,
random values: 71)

1. u<s$Z;
2. Al =uG
3. AQ =uP

4. ¢ = hash(A;, Ay)
5. w=u-+ecr

6. return (A, Az, w)

Verification

ANDProofVer (proof (Aj, Ay, w))

1. ¢ = hash(A;, As)

37

Sovereign System

2. The proof is valid if the following equalities hold, invalid otherwise:

o WG =A,+cA
o wP = Ay +c(B—mQ)

38

Sovereign System

6.6 Proving the Equality of the Secret Between JubJub
and ed25519

e Let |G| = p and |G| = ¢ where G, is the ed25519 and Gy is the JubJub curve.
e Let n be the bit length of ¢ (since ¢ < p).

e Let GGy, H; be generators of Gj.

e Let Gy, Hy be generators of Gs.

e Let pk = z - Gy where ©x = z4||-- ||z, with z; € {0,1}. Note that pk is a public key
which will be used on Algorand.

o Let Comy; = x; - G1 + s; - Hy for some randomness s;.
e Let Comy,; = x; - Gy +t; - Hy for some randomness ¢;.

e Given public values Com; ;, Coms,; and private values (x;, s;,t;), we want to prove that

(Comu = S; H1 A Comm- = tl . HQ) V (Comu = Gl + S; - H1 N Comgﬂ' = GQ + tl . Hg)

Namely, if ; = 0 then Com;,; = s; - H; and Comgy; = t; - Hy, and if x; = 1 then
Comy,; — Gy = s; - Hy and Comgy,; — Gy =t; - Hy. Therefore, we will prove that

(Si = IOgH1 CO’I’)’LLZ‘/\tZ‘ = IOgH2 C’omg’i)\/(si = IOng (C’omu—Gl)/\ti = IOgH2 (COmgvi—GQ)).

6.6.1 orProofGen: OR-composition Between JubJub and ed25519

Proof Generation

orProofGen(public: G4, Hy, Gg, Hy, Comy ;, Comygy,
private: (x;,s$;,t;)

39

Sovereign System

Cc = SHA256(A1’Z, AQ’Z‘, ,171», /271», CO’ITLLZ', C’omu)

Cl; = C— Cgy

52
W1; = U1,; + C14S;

/ _ / /
wy ;= uy,; + ot

)
)
(i) ¢y =c—ay,
)
)

—_
=

Cl,i, W1, U2 €ER Loy

—~
=3

e N e e e e e e e e

/ / /
Clis WY 4y U ER Ly

—~
o

Al,i = Wi, - H, — Cl,z‘OOml,i

(d A2,i = Ug; * H,

(e /12 = w,l,i - Hy — C/l,icomQ,i

(f /22 = Ulzz - Hy

(g C= SHA256(A1’Z, Agﬂ', /171-, Al2,i7 Comu, Comm)
(h) co; =c—cyy

(i 0,2,2' =C— Cll,z'

PamnS
—.

Wo; = Ug; + C2;4S;

—~
=

— o/ /
w2 ;o — u2,i + CQ,ztl

/ / / / / /
3. return (A, Asy, 172‘,A27Z‘,Cl,iaczhcu‘aCQ,iawLivw?,i»wl,ivw2,i)

Sovereign System

3 3 / / / / / /
Verlﬁcatlon (1417747 A27i7 Al,i7 Az,i7 Cl,Z‘) C2,i7 cl,i7 0277;, wIJ’, w2’i7 wl’i, w271)

1. c= SHA256(ALZ, AQ,I‘, All,i’ Al27i, C’omu, COmgﬂ‘)

2. The proof is valid if the following equalities hold, invalid otherwise:

?
®CitCyi=c¢

® i, ¢, L

o wy,; - H < A1+ c,Comy

o W, Hy - A+ ,Comy,

o wy; - Hy = Ay + coi(Comy; — Gy)
o wy, - Hy L Ay + ey (Comg; — Gy)

6.6.2 eqProofGen: EQ proof to use in JubJub: Proving the knowl-
edge of s where s- Hy = Com; — pk

Once the OR proof in the previous section has been verified, both the prover and verifier can
compute:

1. Comy =312 - Comy; = -G+ s- Hy.
2. Comy = 2711 2i=1. C’omm =x-Gy+t- Hs.

Next, the prover proves that Com; = x - G; + s - H; and pk = x - G indeed correct using
the following equality proof:

41

Sovereign System

Proof Generation

egProofGen(public keys: Comy,pk,
random values: §)

1. wp,ug <$ Zy

2. Ay =u; - Hy

3. Ay = uy - Hy

4. ¢y = SHA256(Comy,pk, Ay, Ag) and co = SH A256(As, Ay, pk, Com,).
5 w; =u1 + 18

6. wyg = Uy + Co8

7. return (Comy, pk, Ay, Ag, w1y, ws)

Verification(Comy, pk, Ay, Ag, w1, w3)

egProofVer (public values Comq,G1)
1. ¢ = SHA256(Comy, pk, Ay, As) and co = SH A256(As, Ay, pk, Comy).
2. The proof is valid if the following equalities hold, invalid otherwise:

e wy - Hy = A+ c1(Comy — pk)
o wy- Hy = Ay + co(Comy — pk)

6.6.3 Additional EQ proof to reduce the number of constraints in
ZKSNARK: Proving the knowledge of ¢t where ¢- Hy = Coms — pk’

Next, the prover creates pk’ = = - G5. This is added to the protocol to reduce the size of the
ZKSNARK circuit. pk’ will be an additional public input where the number of constraints will
be smaller than giving Comsy as an input. Then, he proves that Comy, = x - Gy +t - Hy and
pk! = x - G5 indeed correct using the following equality proof:

Proof Generation

42

Sovereign System

eqProofGen(public keys: Coms,pk’,
random values: t)

L. ug,up <8 2,

2. Ay =u; - Hy

3. Ay = us - Hy

4. ¢y = SHA256(Coms, pk’, Ay, Ag) and co = SHA256(As, A1, pk’, Coms).
5. w; =uy + cqt

6. we = Uy + Cot

7. return (Comag, pk’, Ay, Ag, wy, wo)

Verification(Coms, pk/, Ay, As, wy, ws)

eqProofVer (public values Coms, Gs)
1. ¢ = SHA256(Comag, pk’, Ay, As) and co = SHA256(As, Ay, pk’, Coms).
2. The proof is valid if the following equalities hold, invalid otherwise:

o wy - Hy = A+ c1(Comg — pk/)
o wy - Hy = Ay + co(Comg — pk')

43

Sovereign System

Chapter 7

Definitions for the Sovereign System

7.1 Unique identification (ulD)

Unique identification, or ulD, is a process whereby a user presents biometrics and identity doc-
umentation to confirm they are a unique Member of the network. The uniqueness identification
includes encryption of a Member’s data, storage of that data in decentralized storage, creation
of a DID object with claims to said data, a zero-knowledge setup which includes fallback au-
thentication for recovery of data and assets, and an on-chain CID record of the DID object.
Members performing the initial setup of their uID will have a user experience in the application
interface similar to Know-Your-Customer or KYC. Members complete biometric and document
submissions as in the KYC process. However, data is managed quite differently in the case
of ulD. Before being admitted to the network, a Validator must conform to requirements laid
out by the Producer to comply with the network’s specific requirements. Second, and most
importantly, Validators share no collected data collected for ulD with any other entity besides
the Member. The Member also can request the deletion of all data except for biometrics.
Biometrics information will be stored with the Validator for future ulD checks. For the pro-
posed framework based on uniqueness, the Validator must adhere to the specific requirements
presented in 2.2.2.

7.2 Main Account

The Main Account is the hub for all activity in the sovereign system. The Main Account has
two functions. The first function is producing an on-chain link to the CID of the DID object
created in the ulD process. The second function is to act as the signatory for the Member
during the zero-knowledge setup for all Associated Accounts. The Main Account should hold
no assets and perform no transactions other than the establishment and maintenance of the
DID object connected to the account. With ulD linked to the Main Account and all Associated
Accounts created through the Main Account, all accounts are recoverable with ulD through the
Main Account.

44

Sovereign System

7.3 Associated Account

The Member creates Associated Accounts for each specific process employed by a Member.
These processes can include holding and sending assets, connecting with peers, connecting to
applications, voting, etc. The Main Account signs a transaction authorizing the creation of the
Associated Account as part of a zero-knowledge setup of the account. This setup is critical to
the recovery methods described in 2.2.2 and allows for the discovery of all Associated Accounts
by the Member without having those connections discoverable to outside parties viewing the
transactions on the network.

7.4 Self Sovereign versus Sovereign versus Custody

In reference to this work, Self Sovereign is the ability to have complete ownership and positive
control over one’s data and assets. Self Sovereign implies that the burden for accomplishing this
lies solely with the owner and all actions, including custody, is accepted in full by the owner
with no recourse in the event of an error on the owner’s part.

In the Sovereign System, outside parties can ensure avenues available to protect assets and
data from loss or manipulation and create structures to automate complex processes to reduce
friction. The owner can rely on assistance from outside parties so long as those outside parties
cannot view, access, alter, or transact with the owner’s data and assets without the owner’s
express consent. Further protections, including recourse for transactions, are possible but not
explored in this work.

If any outside organization can view, access, alter, or transact an owner’s data or assets
without the owner’s express consent, the Sovereign model is broken and should be considered
a custodial model.

45

Sovereign System

Chapter 8

Merkle Tree and Authentication Path

The Sovereign System uses Merkle Tree and Authentication path to allow users to generate
Associated Accounts without disclosing the link between the Main Accounts [G.J20, sem22].

First of all, a complete binary tree T is said to have height H if it has 27 leaves, and 27
-1 interior nodes. By labelling each left child node with a “0” and each right child with “1”.
Furthermore, a Merkle hash tree is a complete binary tree equipped with a function hash and
an assignment € which maps the set of nodes to the set of k-length strings:

z — 0(z) € {0, 1}

For the two child, .5, and x,ign¢ of any interior node, Zpgrent, the assignment ¢ is required
to satisfy

e(xparent) = haSh(xlefteright)-

Merkle Tree

MerkleTree(public: start, maxheight)
1. Set leaf = start and create empty stack.
2. Consolidate: If top 2 nodes on the stack are equal height:

e Pop node value 2,4 from stack.

e Pop node value x5 from stack.

o Compute Tpgrent = hash(Tiepe||Trignt)-

o If height of xp4rent — mazheight, output xp4ren: and stop.

e Push zp4,cn¢ onto the stack.

3. New Leaf: Otherwise:

46

Sovereign System

Compute zj.rr = LeafCalc(leaf) where LeafCalc produces 6(z) at the cost of
single computational unit.

Push ;.4 onto stack.

Increment leaf.

Loop to step 2.

Authentication Paths.

The goal of Merkle tree traversal is the sequential output of the leaf values, with the associated
authentication data. For each height h < H, we define Auth;, to be the value of the sibling of
the height h node on the path from the leaf to the root. The authentication data is then the
set {Auth;|0 < i< H}.

The correctness of a leaf value may be verified as follows: It is first hashed together with its
sibling Authg, which, in turn, is hashed together with Auth,, etc., all the way up to the root.
If the calculated root value is equal to the published root value, then the leaf value is accepted
as authentic. Fortunately, when the leaves are naturally ordered from left to right, consecutive
leaves typically share a large portion of the authentication data.

(h12345678=N(n1 234 | | N5678,41))
C N1234,=h(01 24z] | N340 > (N5678,,=N(N561e | | N781))

l_l_\ l_l_l

(mz.aﬁ:hmsﬁ\\hzﬂgm)D <h34ﬂghtzh(h3‘e&||h4ﬂgm>> (h56.eﬁ:h<h5‘eﬁ\\h6r.gm)> <h78mgm:h(h7‘e&|\h&@m)D

— — =

Gme&:h(xb hz,‘ghfh(@ @a‘efh(xgb h4”gm:h(x@ GS\eth(fo h6”gm:h(x@ @Ze&:h(xD @S‘efh(x@

X1 Xz X3 Xa Xs Xe X7 (Xg)

Figure 8.1: Merkle Tree.

47

Sovereign System

Chapter 9

Open Source Crypto Libraries for
ZKSNARKSs

The Sovereign System uses ZKSNARKSs to ensure that participating parties are doing calcu-
lations correctly without disclosing any information about their private values. This chapter
overviews the details of the implementation of the underlying ZKSNARK proofs.

9.0.1 SNARK friendly curves and hash functions

Remark (SNARK friendly curves). The Algorand network uses the ed25519 curve for signature
generation (in particular, REC8032 [JL17]). Due to the performance issues, it is very expensive
to utilize RFC8032 in the ZKSNARK computations. Therefore, we need to use SNARK friendly
curves such as JubJub during the proof generation. In order to utilize JubJub in the proofs, we
need to make sure that the private key used in the JubJub curve is the same as in ed25519. The
protocol presented in Section 15 used to prove this relation.

Remark (SNARK friendly hash functions). The ZKSNARK proofs are also very expensive
if one uses SHA functions or Blake (as they are used in RFC8032 [JL17]). Therefore, the
architecture of the Sovereign system has been designed in such a way that only SNARK friendly
hash functions such as Poseidon are going to be used.

9.1 Circuit Generation: Circom

e https://github.com/iden3/circomlib
e It contains the implementation of different cryptographic primitives in Circom language.

e Circuits are basically statements that we need to prove, and they will be written in this
language.

9.2 Proof Generation & Verify

e Rust based compiler: https://github.com/iden3/circom

48

https://github.com/iden3/circomlib
https://github.com/iden3/circom

Sovereign System

e JS based compiler: https://github.com/iden3/snarkjs. This is a JavaScript and
Pure Web Assembly implementation of ZKSNARK and PLONK schemes. It uses Groth16
(only 3-point multiplication and 3 pairings) and PLONK.

e https://github.com/iden3/go-circom-prover-verifier

e Go implementation: ZKSNARK prover & verifier is compatible with Circom. It uses
bn256 (used by go-ethereum) for the Pairing curve operations.

Remark. The Sovereign system aims to utilize the Plonk construction due to its advantages
such as being trustless, universal, and having an updatable setup.

9.3 Communication: Use gRPC

e Go: https://grpc.io/docs/languages/go/basics/

e Node: https://grpc.io/docs/languages/node/quickstart/

9.4 Additional Tutorial & Documentations:

e ZK Background: https://docs.circom.io/background/background/

e Circom Language: https://docs.circom.io/circom-language/signals/. For more
circuits, https://docs.circom.io/more-circuits/more-basic-circuits/.

e More Documentation: https://iden3-docs.readthedocs.io/en/latest/iden3_repos/
circom/TUTORIAL.html

e A tutorial for using Circom: https://hackmd.io/@n2eVNsYdRe6KIMAPhI_2AQ/SJJ8QdxuB

49

https://github.com/iden3/snarkjs
https://github.com/iden3/go-circom-prover-verifier
https://grpc.io/docs/languages/go/basics/
https://grpc.io/docs/languages/node/quickstart/
https://docs.circom.io/background/background/
https://docs.circom.io/circom-language/signals/
https://docs.circom.io/more-circuits/more-basic-circuits/
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/circom/TUTORIAL.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/circom/TUTORIAL.html
https://hackmd.io/@n2eVNsYdRe6KIM4PhI_2AQ/SJJ8QdxuB

Sovereign System

Chapter 10

The Sovereign System

10.1 Entities

10.1.1 Member

A Member is a unique participant in the public network. Members include individuals, busi-
nesses, and institutions (from not-for-profits to government entities). To avoid issues noted
previously, having a method to ensure uniqueness is critical to providing structure to the pro-
posed Sovereign System. Each Member has a decentralized identifier (DID) attributed to their
Main Account that notates their uniqueness on the network. This DID is the Member’s anchor
for all web3 data and asset activity.

10.1.2 Issuer

An Issuer is an entity that issues documentation acceptable to a Validator for provision onto
the network or addition to a Member’s identity vault. An Issuer must be approved by the
Producer(s) and any governing Organization(s) before admittance. Formal acceptance of Issuers
and the documentation they produce ensures Members, Verifiers, and consumers of DID claims
have confidence in the data stored on the network.

10.1.3 Validator

A Validator is an entity that qualifies and authenticates documents and data produced by
Issuers, as well as biometric or other identifying data presented to the Validator directly by
the Member to verify uniqueness through a process known as unique identification (uID). The
Validator must be able to employ specific checks against material presented by the Member in-
cluding liveness (proof of being alive, present, and not under duress at time of authentication),
biometric scans, proof that supporting documentation matches biometrics, and most impor-
tantly that a prospective Member does not already have an established main identity account
on the network.

Remark. During the initial implementation, Identity Proxy Server (IPS) will be a trusted
entity between the Validator and the Producer. In the long-term, the functionalities of IPS are

50

Sovereign System

expected to be integrated with the Validator.

10.1.4 Independent parties: Organization;, ---, Organization,

An Organization is any network entity that supports and manages the network’s operation. In
this paper, we explore an implementation with two Organizations, a Producer and a Foundation.

10.1.5 Producer

A Producer is an Organization responsible for properly operating the network by acting as a
relayer for the network as it receives data from Members and Organizations and approvals from
Validators. The Producer receives these relays and verifies messages through cryptographic
and other calculations, produces DIDs, and leads key management. The Producer can be
a centralized entity, a centralized entity employing smart contracts for operation, or a fully
decentralized set of smart contracts with key management managed by the contract owner(s)
or the contracts themselves.

10.1.6 Foundation

A Foundation is an Organization responsible for the proper operation of the network by rep-
resenting and advocating for the Members of the network, and auditing the Producer. In this
paper, we envision the representatives of the Foundation are proposed for short-term appoint-
ment to the Foundation by the Producer and the Members of the network who stake dA beyond
their Minimum Commitment vote whether to admit each representative through a majority yes
or no vote. The Members who stake dA beyond their Minimum Commitment also have the
authority to vote a representative out of the Foundation before their term ends. This structure
creates a check and balance system between the Organizations and the Members of the network.

10.1.7 Service Providers

Service Providers leverage ulD for authentication, Associated Accounts for creating and man-
aging connections to Members of the network, management of user assets, anonymous or user-
provisioned KYC and ongoing AML, and attribute custom data to the DID to perform user-
owned data operations.

10.2 Trust Assumptions and Requirements

e Only registered users to the Validator are allowed to use the Sovereign System (for the
uniqueness of the real users).

o Let (tpkedossio, tSkeazssio) and (tpkjubjubs tSkjubjus) be the public and private key pairs of
a user’s Main Account on Ed25519 and JubJub curves, respectively. Each user will have
one single (tpkjubjub, tSkjubjup) (similarly, one single (¢pkeasssio, tskedzss19)) in the system
which will be used to create a Main DID object for the user U , called DID,,.

ol

Sovereign System

A Algorand Smart
Contract

A .
CID (Content Identifier
of the Trustible DID object)

»

A
User
idcredentials, securityanswers

.| Identity Proxy

-~

~

Organization 1
(pko1.8ko1),
(pubshare,.g 1. keyshare,g 1)

Server (IPS)
(Pips, Sk ps]

Figure 10.1: A High level Architecture of Sovereign.

h 4

Organization 2
Proz.5Koz),

(pubshareg -, keyshareg,)

(

1

Qrganization n

(Bkon.SKon),

\J

(pubshareg, . keyshare g) /

— Note that existing systems like Polygon ID do not consider the uniqueness of the
real users. In the Sovereign System, there will be only one main identifying DID

object for one single user assuming that the Validator is honest.

— Also, the user can use the main identifying DID object in other services (such as
authentication, voting in electronic polls, and privacy preserving complaint trans-
actions) through selective disclosure by means of only revealing certain information
of the credentials. The Main Account which resolves to the main identifying DID
object is not exposed in this process.

e Each private key of other chains is encrypted with a newly generated public and private
key pair. This new key is deterministically derived from tskj,p;u (Which is also equal to

t5ked2s519)-

e The Sovereign System uses (t,n) threshold secret sharing scheme where at least ¢ shares
must exist to be able to obtain the private key. Since the Sovereign System always
requires user involvement during the key recovery process, the user is supposed to hold
the controlling interest of the shares of the private key of the Main Account. Therefore,
even if all participating parties (except the user) are malicious and colluding, they will
not be able to recover the private key.

e The user’s private key shares of tskjupjup (OF tSkeazss19) are generated from selected and
pre-defined security questions.

52

Sovereign System

— A pool of security questions need to be selected carefully.

— Security answers should be difficult to predict. However, they should be easy to
remember even years later.

The security questions are encrypted through (¢, n) threshold encryption scheme (between
n organizations). The selected security questions are not known by any party individually.
During the registration, they are encrypted through (¢,n) encryption scheme. The user
is expected to encrypt the questions correctly during the registration.

If users lose everything (all public and private values), they must

— provide their credentials to the Validator and answer to a publicly known pre-defined
security question correctly to be able to identify the DID object, and

— answer to the additional security questions which were selected by the user (and
stored in the DID object) during the registration.

Users can only recover their private keys as long as they remember their answers to the
selected security questions correctly. Furthermore, their private keys and the private keys
of other chains cannot be recovered if the security questions are not answered correctly.

The overall Sovereign System is resistant against threshold number of corruption. Namely,
the Sovereign System can recover all the keys of users if at least one organization is honest
or participates in the protocol (in addition to the user).

The encrypted private keys of other chains are all indistinguishable. Even if DID, of a
user is disclosed, no one can learn any information whether the user has protected his/her
private keys of other chains.

The Producer cannot obtain any private information about users (i.e., private keys or
credential attributes).

Associated Accounts can be proven that they are linked to an existing Main Account
without disclosing any information about the users or the Main Account.

The Validator will be a trusted entity. The Validator is assumed to see the credential
details of the users but is not supposed to share with anyone except sharing the validity
of the user with the Producer. Note that since Validator sees the identifying information
during the protocol executions, it can learn which DI D, belongs to which user. However,
it cannot obtain any information about the activity of the user because Associated Ac-
counts cannot be linked to any of the Main Accounts. For example, it also cannot learn
whether the user has created an associated or used in a use case scenario (e.g., encrypting
a private key, transferring assets, or voting).

Remark. During the initial implementation, Identity Proxy Server (IPS) will be a trusted
entity between the Validator and the Producer. The IPS is assumed to see the credential
details of the users as well as which DID,, belongs to which user, however it is should
not share with anyone except sharing the validity of the user with the Producer. In this
case, the Validators cannot learn which DID,, belongs to which user.

53

Sovereign System

10.3 Unique Identification (ulD)

As the Sovereign System involves many parties in a cooperative model, a Member must be able
to make authoritative claims to their data and assets. Multiple parties, or Multiple accounts
held by one party, could make claims over an account(s) without authentic claims. Adding
unique identity to the network helps build a trust layer over all actions taken on the network.
ulD ensures that a Member may only create one Main Account on the network. Not only is
this crucial in helping Members and Organizations transact with greater peace of mind, even
when the counterparties are anonymous or pseudonymous, ensuring ulD checks are factual is
also critical to a tamper-proof recovery process for private keys.

10.3.1 Validator Requirements to ensure ulD integrity on the network

e Validators performing services for other entities must run a separate environment to
specifically handle the custom workflow of ulD to ensure no leakage of personal identifying
information, or PII, of the registrants and Members. The Producer must have no access
to identifying information.

e The Validator must be able to identify previous Registrants and accepted Members while
processing ulD biometrics and documentation and appropriately flag the registration
attempt to prevent a fictitious or duplicate entry into the network.

e The Validator must return specific data attributes containing personal identifying infor-
mation, or PII, we term idcredentials to the Member’s device through secure channels
upon confirmation of uniqueness.

e The Validator must accept a signature of the compressed idcredentials from the Member.

e The Validator must agree to verify the signed idcredentials and present this hashed value
with randomness to the Producer for verification.

e [f there are multiple Validator’s, they must agree to share biometric data to ensure en-
trants to the network are unique.

10.4 Registration and Creation of a Main D